Survey of the Adequate Descriptor for Content-Based Image Retrieval on the Web: Global versus Local Features
نویسندگان
چکیده
The need for efficient content-based image retrieval has increased hugely. Two methods are recognized for describing the content of images: using global features and using local features. In this paper, we propose two methods for image retrieving based on visual similarity. The first one characterizes images by global features, when the second is based on local features. In the global descriptor attributes are computed on the whole image, whereas in the local descriptor attributes are computed on regions of the image. The aim of this paper is to compare global features versus local features for Web images retrieval. RÉSUMÉ. On reconnait actuellement, dans les systèmes de recherche d’image par contenu, deux méthodes pour la description du contenu des images : à travers des attributs locaux ou à travers des attributs globaux. Dans ce papier, nous proposons deux méthodes pour la recherche d’image qui sont basées sur la similitude visuelle. La première caractérise les images par des attributs globaux, alors que la seconde est basée sur les attributs locaux. Concernant le descripteur global, les attributs sont calculés sur l’ensemble de l’image, alors que pour le descripteur local, les attributs sont définis sur les régions de l’image. L’objectif de ce papier est d’évaluer les performances des attributs locaux contre les attributs globaux pour la recherche des images Web par contenu.
منابع مشابه
A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملImage retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کاملContent Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram
Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a database. In medical applications, CBIR is a tool used by physicians to compare the previous and current medical images associated with patients pathological conditions. As the volume of pictorial information stored in medical image databases is in progress, efficient image indexing and retri...
متن کاملA Novel Image Structural Similarity Index Considering Image Content Detectability Using Maximally Stable Extremal Region Descriptor
The image content detectability and image structure preservation are closely related concepts with undeniable role in image quality assessment. However, the most attention of image quality studies has been paid to image structure evaluation, few of them focused on image content detectability. Examining the image structure was firstly introduced and assessed in Structural SIMilarity (SSIM) measu...
متن کامل